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SUMMARY: 

The scattering of  electmmagnetic waves by  conducting cylinders with 

arbitrary cross sections are computed by  an  approximated method called the 

point-matching method. The theory i s  confirmed  by  low  frequency  scattering 

and  numerical examples. However, this method i s  not applicable  to the 

scattering  by  an infinite strip. The low frequency  scattering shows also that 

for a known  scattered field the cross-section of  the scatterer  can  be found. 
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1 .  INTRODUCTION: 

Scattering of a plane wave by  conducting  cylinders has been studied 

extensively. The method of separation i s  applicable  to  only a few  simple  geometries, 

namely,  the circular  cylinder, the ell iptical cylinder,  and the wedge.  For  cases 

where the method of separation  fails,  approximate methods  must be used. Variational 

methods, low-frequency approximations, high-frequency approximations, and  the 

approximate  solution of  an  integral  equation are applied successfully to many  cases. 

In  this paper a new approximate  method*  (point-matching method) i s  introduced for 

computation of scattering by conducting  cylinders with  arbitrary cross-sections. The 

calculations necessary for this  method are very simple, particularly when a d.igital 

computer i s  available. 

1 -6 

In  the following considerations, the point-matching method i s  applied  to the 

oblique  incidence for both  parallel and  perpendicular  polarizations.  Scattering  by  a 

circular  cylinder and  by a square cylinder are considered as examples to demonstrate 

the  accuracy of  this  method, I t  i s  very  interesting to note that at  very  low frequencies, 

the cross-section of the scatterer can be determined  approximately  for a specific 

parallel  polarization scattered field, A limitation  of the point-matching method i s  

also discussed in  detail. 

* A recent article by Mull in and co-authon  in IEEE Trans, on Antenna  and  Propagation 

(Vol. AP-13, p. 141, January, 1965) adopted the same method to  treat the same 

problem with extensive  data. I t  was read by the author  during the final  preparation 

of this paper. More discussion about  the applicability  of this point-matching method 

will  be  presented in this  report. 
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2. THEORY 

Consider the  oblique  incidence of a  plane wave on a perfectly  conducting 

cylinder as shown in Fig. 1 .  Parallel  polarizotion means that  the  electric  field 

vector i s  parallel  to the plane of  incidence. I f  the electric  field  vector is . 

perpendicular to the  plane of incidence, i t i s  called  perpendicular  polarization, 

An arbitrarily  polarized wave can be  resolved into these two components. The 

scattered field  of a  conducting  cylinder i s  determined from a  scalor wave equation 

( V 2 + k  ) ~r = O  
2 s  

0 

2 2  2 
where k = w po E and T' i s  the Laplacian operator. The boundary 

0 

conditions  that  the fields must fulfi-I1 are: 

(i) The scattered field satisfies the radiation  condition. 

(ii) The total  field  (incident plus scattered) i s  subjected either  to  Dirichlet 

or Neumann  boundary conditions at the surface of the  cylinder. 

Let  the  normalized  incident  field be  expressed by 

where 

k = k cos a 

k2 = k sin a 

1 0 

0 

the  angie a i s  the angle of incidence,  and 8. i s  the  angle  between  the x-z 

plane and the  plane of  incidence (see Fig, 1 ) .  Since the cylinder i s  assumed to  

have infinite length, the scattered field may be written as 

I 

00 
Jis = Z An @n exp. ( j k p )  

n=* 

2 



where  the constants An are determined by the'boundary  condition at  the  periphery 

of cylinder ; #n, a  known  function of transverse position (transverse to z),is the 

particular  solution  of 

2 2 z $n + k, $n = 0 

with  specification of outgoing wave,  where  represents the two  dimensional 

Laplacian operator. Under these  assumptions, the total  field i s  given by 

2 

JI = f  e $  i 

The boundary condition (ii) requires that 

and $ 1  = o  
C 

for parallel  polarization and  perpendicular  polarization respectively, where C 

denotes the contour described by the  cross-section of the cylinder, and n i s  

the unit  vector normal to the surface. If the  expansion coefficients A can be 

evaluated  by Eqs. (6) ,  then Eq.  (3) i s  the solution for  the scattered field. The 

remaining problem, to obtain the A 's, i s  solved by  requiring Eq. (5) to satisfy 

Eqs. (6). 

"e 

n 

n 

Suppose that the series of Eq. (3) converges uniformly and the scattered 

field may be approximately expressed by 2 N  + 1 terms,  That i s  

Equation (5) i s  then  reduced  to 

N 
= c (cos a) exp [jk,r cos (0 - e.) 1 1 t t n = - N  A n +n 1 exp (ik2z) 
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The point-matching  approximation requires Eq, (8) to  fulf i l l  the boundary'condition 

at  only 2N + 1 points around the  periphery of  the conducting  cylinder  provided  that 

these points  sufficiently describe  the  shape o f  the cross-section,  Under  these 

assumptions,  from  Eq. (6a) or (6b) results a system o f  2N+1 inhomogeneous algebraic 

equations with 2N+1 unknowns A . This set of equations can be solved  for  values 

o f  A by  algebraic methods or  by a digital computer. The approximate solution i s  

then complete for one specific frequency. The scattering cross-section, radiation 

pattern, echo  area, etc.,  can be approximately  evaluated from.Eq. (7). Incidentally, 

Eq. (4) i s  known  only in  two  cylindrical coordinafe systems, namely, circular 

cylindrical and elliptical  cylindrical. Hence, the function 4 can  be  either a 

circular  cylindrical wave function  or  an  elliptical wave function. For circular 

cylindrical coordinate system, $" = H (2) (k lr) exp (in@), where H ('I i s  the 

Hankel  function O F  the second kind. In the following discussion only the circular 

cylindrical wave function i s  considered, 

n 

n 

n 

n  n 

3. PARALLEL POLARIZATION 

The direction  of propagation o f  the incident  plane wave i s  at  an angle of 

incidence a as shown in  Fig, 1. The z-component of  the normalized  electric 

field vector  which  lies  on the X-z  plane i s  given  by 

E '  = (cos a) exp. [jk,r cos ( 0  - e.) + jk2zJ 
Z I 

The z-component of the scattered electric field may be approximately  written 

as 
N 

ES = 1 A H (k,r) exp. ( in0  + j k p )  
z 

n= - N n n  

If eo) I(r, I e,), (r2, 02) * *  * ('ZN, e 2N ) are the suitable  points around 

the cross-section of the  cylinder as shown in  Fig, 2, the point-matching method 
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requires 
N 

(cos a ) exp. (jklrm cos (em -e . )  1 +z-N A H (*) (klrm) exp. (inem)= 0 (10) 
1 n n  

where m = 0, 1, 2, . . . 2N. Eq. (10) can be  solved ,for A algebraically. n 

4. PERPENDICULAR POLARIZATION 

I f  the  magnetic field  vector  of the incident wave lies on the X-L plane, 

the z-component of  the magnetic field i s  assumed to  be 

H = Z (cos a) exp. i jk,r cos ( @ - pi) + jk2z 1 i -1 
L O  

1/2 
where Z = ( po/eo) i s  the intrinsic impedance of  free space.  The approxi- 

0 

mate  expression for the  z-component of the scattered magnetic field may  be 

written as 

N 
HS = t B H (2) (klr)  exp. (in8 + jk2z) 

n = - N  n n  

Similarly, i f  the points (r eo) ,  (rl, e l ) ,  (r2, 02) , . . (r2,,,, 8 2N ) are  chosen 

around the cross-section for the point-matching method, the boundary condition  of 

Eq . (6b) requires 

0' 

a a + sin $I - ) { Z (cos a ) e x p .  [ jk lr  cos ( 8  - e i ) ]  - 1  
(cos $Im ax 

m a Y  0 

N 

= o  

I r = r m  e = em 
where 2 2 2  

r = x  + y  

- + A  
n . x = - c o s 0  
m m 
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A 3 
x i s  the unit  vector in the  x-direction, n i s  the unit vector normal to the 

surface at points (r 8 ) (see Fig. 2) and m = 0, 1, 2, . . , 2N. Eq. (12) 

can  be  evaluated  without  difficulty  at each point i f  the  contour i s  a.srnooth 

curve, and the expansion coefficients B are determined as discussed previously. 
n 

In case that  the  contour i s  made of broken lines as shown in Fig. 3, the corner 

points have significant  effects on the scattered field. The normal unit  vector  at 

these points  are taken  along the bisectof of the corner angle (see Fig. 3). 

m 

rn' m 

5 .  TOTAL SCATTERING CROSS-SECTION 

In two  dimensional problems, the total  scattering cross-section i s  defined 

as the ratio  of the total scattered power per un i t   mia l  length  to the incident 

power  density, Thus 

where the line integral i s  an  arbitrary closed path  encircling the cylinder. The 

scattering  poynting  vector S are defined as 
3 s  

+ 1 "+ + *  
S = - E x H  2 

where the star  denotes the complex conjugate  quantity. The incident power 

density P = l/Zo. The line  integral, in general, i s  more conveniently 

evaluated  at r approaching infinity. By using Eqs. (9) and (ll), the total 

scattering cross-sections  are given by 

I 

2 N 
u = (4/k0 COS a ) 1 
// n= - N 

2 2 N 

n = - N  
u - (42 /ka cos a ) 1 1,- 0 (15) 

for  parallel and perpendicular  polarization  respectively.  With  known values o f  

A a d  6 , i t  i s  very simple to  calculate  the  scattering cross-sections. n n 
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6.  NORMAL INCIDENCE 

Normal  incidence i s  a  special case of  the oblique  incidence. It i s  obtained 

simply by putting a=O in a l l  equations o f  sections3 and4. However, in parallel  poiari- 

ration, no  transverse  component  (transverse to z) of  electric field exists in the 

normal incidence  while the transverse electric field  appears in oblique  incidence. 

Similarly, no  transverse magnetic field exists in perpendicular  polarization o f  

normal incidence. In both cases, the expressions for  the total  scattering cross- 

section I E q s .  (14) and (15) i remain  the same with a = 0 ,  

7, NUMERICAL EXAMPLES 

The accuracy of  the point-matching method  discussed previously  can be 

demonstrated by numerical examples. The first case considered i s  the parallel 

polarization  of normal incidence. The scatterer i s  a circular  conducting  cylinder 

o f  radius a. This i s  not  a tr ivial example  because the boundary conditions are 

satisfied  at  only a finite number of  points around the  periphery, Table I lists  the 

exact values of u/4a and  those calculoted by point-matching method for various 

values of  N in Eq. (14). Equal spaces between  points are  chosen for 

Table 1 .  Scattering cross-sections (u/4a) of a circular  cylinder 

0 Exact 3 2 1 

1 

1 .3065 1 .3056 1 .2829 0.9858 0.8795 2 

1.4783 1 .4780 1.4497 0.9324 

- 

the  approximate calculation  with the angle  starting from e = 0. Note  that the 

symmetry with respect to x-axis o f  the cross-sectional  geometry  and 0. = 0 

reduce Eq. (10) to the  following form: 
1 
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d=o 
(cos a) exp. (jk cos Om) = Z A e H (2) (k ,rm) cos@)m = 0 l a  R 

where 

The expression for total  scattering cross-section i s  changed to 

2 L 
u = (4/k COS a) 1 

.4=0 
0 

Consequently, only the points  on and  above the x-axis are used in the calculation. 

Consider parallel  polarization  of normal scattering by a square cylinder  with sides 

equal  to 20 (see Fig, 4). Calculations are  made for matching 3,5, and 9 points 

at k a = 0.5 and 1. Points are chosen in  the  order marked in Fig. 4. Values o f  

a/& computed by  point-matching method  are listed in Table II and compared 

with those calculated  by  Mei and Van Bladel. 

0 

6 

Table I I .  Scattering cross-sections  (u/4a) o f  a square cylinder. 

Mei and 
2 Van  Bladel 8 4 

I 0.5 I 2.264 I 2.120 1 I 2.0 I 
I 1  I 2.093 I 1.81 16 I 1.748 I 1.7 I 

These results show that  the  point-matching method i s  applicable  to  calculate 

approximately the scattering cross-section of  an  arbitrarily shaped cylinder. 

8 
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8. VERY LOW FREQUENCY SCATTERING 

As shown previously,  the  point-matching method i s  applicable  for  approxi- 

mately  solving the problem of scattering of  a  plane wave by cylinders with 

arbitrary cross-sections. The approximation i s  introduced when the boundary con- 

dit ion requires Eqs. (6) to be fulfilled  only  at  finite number o f  points. I f  Eq. (8) 

i s  carefully examined  where the expansion coefficients A are calculated by point- 

matching method,  one  cannot find any  point,  other  than the chosen points, 

satisfying the boundary condition. However, at  very  low frequencies a closed 

cuw'e which  approximately fulf i l ls the requirement can be obtained for both  polari- 

zations. This contour may  be recognized as the cross-section of the conducting 

cylinder  at low frequencies. The details of the symmetrical case i s  given as follows: 

n 

Consider first the approximate cross-section of  parallel  polarization  of 

normal incidence. I f  kr < < 1 for a l l  m i n  Eq. (16) the expansion coefficients 

A of the  scattered field are determined by 
m 

II 
L 

e= 0 

1 - i  L AR N (kr ) cos = O  a m  m 
(18) 

where NL i s  the Bessel function  of second kind, (r eo), (r,, e l ) ,  . . . (rL, e') 
are the chosen points. The cross-section of the  scatter for the scattered field of  

Eq. (9) i s  given  by 

0' 

L 
1 - i 1 AI N (kr) cos 0 = 0 .Q [= 0 

Similarly, the expansion coefficients Bx of the perpendicular  polarization scattered 

field for normal incidence are given by (Appendix A) 

L 

9 
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where F (x, y) = - af(x'y) / af(x'y) ., the cuwe of the origi.nal cross-section 

i s  given by 
a x  a Y  

f ( X l Y )  = 0 (21) 

The cross-section for scattered field of Eq. ( I  1) i s  determined from 

However, Eq. (22) i s  not easy to solve and  no details w i l l  be  discussed. 

As an example, the parallel  polarization  of normal incidence  on a square 

conducting  cylinder  with sides equal to 2a i s  considered. If only six  points on 

the surface  are  matched with the boundary condition as indicated in Fig. 5, then 

the z-component of the scattered electric  field i s  given by 

9 
I 

E' = Z A H (2) (kr) cos n 8 
Z n n  

n = o  

where A. = (- toss)/ Ho(*) ( f i s  ) 
0 

s =  k a  
0 

The total z-component of  electric field in the neighborhood of  the cylinder  at  very 

10 



low freque,ncies i s  found to be 

E = 1 t I .en kor - 0.1159 + 0.3466(a/r) cos 201 / ( i n  k a + 0.2306) (24) 2 
Z 0 

where k r, k a are assumed very small in comparison with  unity. The closed 

contour indicated  by  solid  line in Fig. 5 i s  the boundary of  the  fields  satisfying 

Dirichlet boundary condition, Therefore,  Eq. (23) i s  actually the  approximate 

scattered field of  the parallel  polarization normal incident  on the  conducting 

cylinder  with cross-section as shown in Fig. 5 at  low frequency.  Observe that 

this i s  too big for the  approximate cross-section o f  the square. 

0 0  

I f  the solution i s  obtained by matching  at  eight points as shown in Fig, 6 ,  
then the cross-section of the conducting  cylinder (as indicated  by the 

solid line in Fig. 6 )  at  low frequencies satisfies the boundary condition. By 

comparing  Fig, 6 with Fig. 5, obviously, the  former i s  a better  approximation. 

Hence, i t  can be concluded  that the more points chosen for point-matching 

method, the better the  approximate  solution for  the total  scattering cross-section. 

This i s  in agreement with the  numerical results at  higher frequencies. 

The above discussion suggests that  the  point-matching method can  be 

applied  to  find the cross-section of a conducting  cylinder corresponding to a 

specified scattered field. That is, assuming that the scattered z-component 

electric  field i s  given  by 

N 

n =  - N 
E S =  I: A H (2) (kor) e in 0 

z n n  

the total  field i s  then expressed as 

Let Eq. (26) vanish at 2N 

determined. At very low 

+ 1 points, the expansion coefficients A are  then 

frequencies, the  contour  described  by equating Eq. (26) 
n 
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to zero i s  the cross-section of  the scattering  conducting  cylinder,  and Eq. (21) 

i s  the corresponding scattered field. A table of these pairs can be  made for 

synthesis  problem. 

9 .  LIMITATION ON THE POINT-MATCHING METHOD 

In the previous discussion, the point  matching method was applied  to 

conducting  cylinders  enclosing  the  z-axis, The energy  associated with a finite 

region i s  always finite. However, this method i s  not  applicabie to cases where 

the z-axis i s  either  on  or outside the enclosed  surface of the conducting  cyiinder, 

for the energy associated with a finite  region around the z-axis i s  infinity. For 

example,  consider the parallel  polarization normal scattering of a piane wave by 

an  infinite strip o f  width 20 as shown in Fig. 7(a). The incident  electric  field i s  

given  by 

E: = exp (jk r cos e ) 
0 

I f  the total  field satisfies the Dirichlet boundary condition  at  only four points, 

namely, (a, - n/2), (a/2, - m/2), (a/2, m/2), and (a, m/2) the equation  which 

approximately determines the contour of the cross-section i s  found to be as 

fol lows 

where f a = r. There are two closed  contours,  one enclosed by the other, 

satisfy Eq. (27) as shown in  Fig. 7(b). The scattered field found  under the above 

assumptions i s  caused by the outer  contour. Obviously this geometry has a larger 

effect  on  scattering  than  that of  a strip, The total  scattering cross-section of this 

object  at k a = 0.01 i s  48.94~~. This i s  too  big  to compare with that ( o = 31.05~1) 

of  the strip calculated by Bonwkamp. 
0 7 
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10. CONCLUSION AND REMARKS 

The point-matching method for  computation of scattering of a plane wave 

by conducting  cylinders with  arbitrary cross-section has been examined, The 

theory was  confirmed by considering  low-frequency  scattering and numerical 

examples. This method i s  particularly convenient when a digital computer i s  

available. The inapplicability of this method to the scattering by a strip was 

discussed also. Low frequency scattering suggests that for a known scattering 

field, the cross-sectional shape of the scatterer may be obtained. 

If the incident wave i s  from the close by line sources, this method is 

applicable also. To do this, the plane wave  expression i n  Eq. (2) i s  replaced 

by the wave function  radiating from  the  sources, The  rest of the equations are 

changed accordingly. 

The point-matching method can be extended to the three-dimensional 

problem. This can be done by expressing the scattered field  in a series of 

spherical  Hankel functions with  specification of outgoing wave. However, the 

point-matching steps are complicated and tedious. 
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APPENDIX A 

if the contour  described by the cross-section i s  repretented by Eq (il), 
then 

!2! = F(x, y) 
dX 

and  tan + = - 1/F (x, y )  (A-2) 

The partial  derivatives of r and 8 with respect to x and  y  are  given  by 

a r  - = COS e 
a x  

ae = - cos 0 1 
ay t 

Substituting Eqs. (A-2) and (A-3) into Eq. (12) of the symmetrical  cross-section 

yields Eq. (20) for normal incidence.  Replacing F ( x , y )  by * , rm by r, and 

e by e, one obtains Eq. (22). 
dX 

m 



incident wave - 
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Fig. i - Cylindrical scatterer and cylindrical coordinate system. 

(a)  Side view 
(b) Cross-sectional view 



Fig. 2 - Boundary condition for point-matching method. 
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Fig. 3 - The unit vector normal to  the  corner on the surface, 
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Fig. 4 - The points  chosen  for calculation of a square cylinder. 
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Fig. 6 - The scatterer  cross-section of the  eight-point approximation 
for  square cy l inder   a t  low frequencies. 



I 

Iu r 
I Fig. 5 - The  scatterer  cross-section o f  the  six-point  approximation  for  square cylinder at low frequencies. 



incident wave - 

22 

fig. 7 - (a) The cross-sectional view of the infinite strip a d  the 
coordinote system. 

matching method a t  low frequency. 
(b) The corresponding scatterer cross-section of the point- 
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